Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
J Neurol ; 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38438820

OBJECTIVE: Inflammatory myopathies (IIM) include dermatomyositis (DM), sporadic inclusion body myositis (sIBM), immune-mediated necrotizing myopathy (IMNM), and overlap myositis (OLM)/antisynthetase syndrome (ASyS). There is also a rare variant termed polymyositis with mitochondrial pathology (PM-Mito), which is considered a sIBM precursor. There is no information regarding muscle MRI for this rare entity. The aim of this study was to compare MRI findings in IIM, including PM-Mito. METHODS: This retrospective analysis included 41 patients (7 PM-Mito, 11 sIBM, 11 PM/ASyS/OLM, 12 IMNM) and 20 healthy controls. Pattern of muscle involvement was assessed by semiquantitative evaluation, while Dixon method was used to quantify muscular fat fraction. RESULTS: The sIBM typical pattern affecting the lower extremities was not found in the majority of PM-Mito-patients. Intramuscular edema in sIBM and PM-Mito was limited to the lower extremities, whereas IMNM and PM/ASyS/OLM showed additional edema in the trunk. Quantitative assessment showed increased fat content in sIBM, with an intramuscular proximo-distal gradient. Similar changes were also found in a few PM-Mito- and PM/ASyS/OLM patients. In sIBM and PM-Mito, mean fat fraction of several muscles correlated with clinical involvement. INTERPRETATION: As MRI findings in patients with PM-Mito relevantly differed from sIBM, the attribution of PM-Mito as sIBM precursor should be critically discussed. Some patients in PM/ASyS/OLM and PM-Mito group showed MR-morphologic features predominantly observed in sIBM, indicative of a spectrum from PM/ASyS/OLM toward sIBM. In some IIM subtypes, MRI may serve as a biomarker of disease severity.

2.
Mol Genet Metab ; 140(3): 107675, 2023 11.
Article En | MEDLINE | ID: mdl-37572574

Recessive variants in NDUFAF3 are a known cause of complex I (CI)-related mitochondrial disorders (MDs). The seven patients reported to date exhibited severe neurologic symptoms and lactic acidosis, followed by a fatal course and death during infancy in most cases. We present a 10-year-old patient with a neurodevelopmental disorder, progressive exercise intolerance, dystonia, basal ganglia abnormalities, and elevated lactate concentration in blood. Trio-exome sequencing revealed compound-heterozygosity for a pathogenic splice-site and a likely pathogenic missense variant in NDUFAF3. Spectrophotometric analysis of fibroblast-derived mitochondria demonstrated a relatively mild reduction of CI activity. Complexome analyses revealed severely reduced NDUFAF3 as well as CI in patient fibroblasts. Accumulation of early sub-assemblies of the membrane arm of CI associated with mitochondrial complex I intermediate assembly (MCIA) complex was observed. The most striking additional findings were both the unusual occurrence of free monomeric CI holding MCIA and other assembly factors. Here we discuss our patient in context of genotype, phenotype and metabolite data from previously reported NDUFAF3 cases. With the atypical presentation of our patient, we provide further insight into the phenotypic spectrum of NDUFAF3-related MDs. Complexome analysis in our patient confirms the previously defined role of NDUFAF3 within CI biogenesis, yet adds new aspects regarding the correct timing of both the association of soluble and membrane arm modules and CI-maturation as well as respiratory supercomplex formation.


Acidosis, Lactic , Mitochondrial Diseases , Humans , Child , Mitochondrial Diseases/genetics , Mitochondria/genetics , Mitochondria/metabolism , Exome Sequencing , Acidosis, Lactic/genetics , Phenotype , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
3.
Metabolites ; 12(11)2022 Nov 19.
Article En | MEDLINE | ID: mdl-36422281

Previous fibroblast and recombinant enzyme studies showed a markedly thermolabile p.Ser113Leu variant compared to the wild-type (WT) in muscle carnitine palmitoyltransferase II (CPT II) deficiency. Additionally, it has been shown that cardiolipin (CLP) stimulated or inhibited the p.Ser113Leu recombinant variant depending on the pre-incubation temperatures. In this study, the thermolabilities of mitochondrial enzyme CPT II in muscle homogenates of patients with the p.Ser113Leu (n = 3) and p.Arg631Cys (n = 2) variants were identified to be similar to that of WT. Pre-incubation with CLP on ice stimulated the WT enzyme more than both variants. However, CLP stimulated the variants and WT at 46 °C to about 6-18-fold. The present data indicate that the thermostability of CPT II variant in muscle homogenate is similar to that of WT. This is in contrast to the increased thermolability of enzymes derived from fibroblast and that of recombinant enzymes. Hence, it can be speculated that the disruption of the compartmentation in muscle homogenate mediates a protective effect on the thermolability of the native variant. However, the exact mechanism remains unclear. However, the activating effect of CLP on CPT II in muscle homogenate seems to align with those on recombinant enzymes.

4.
J Neuromuscul Dis ; 9(4): 533-541, 2022.
Article En | MEDLINE | ID: mdl-35694932

GFPT1-related congenital myasthenic syndrome (CMS) is characterized by progressive limb girdle weakness, and less prominent involvement of facial, bulbar, or respiratory muscles. While tubular aggregates in muscle biopsy are considered highly indicative in GFPT1-associated CMS, excessive glycogen storage has not been described. Here, we report on three affected siblings with limb-girdle myasthenia due to biallelic pathogenic variants in GFPT1: the previously reported missense variant c.41G > A (p.Arg14Gln) and the novel truncating variant c.1265_1268del (p.Phe422TrpfsTer26). Patients showed progressive proximal atrophic muscular weakness with respiratory involvement, and a lethal disease course in adulthood. In the diagnostic workup at that time, muscle biopsy suggested a glycogen storage disease. Initially, Pompe disease was suspected. However, enzymatic activity of acid alpha-glucosidase was normal, and gene panel analysis including 38 genes associated with limb-girdle weakness (GAA included) remained unevocative. Hence, a non-specified glycogen storage myopathy was diagnosed. A decade later, the diagnosis of GFPT1-related CMS was established by genome sequencing. Myopathological reexamination showed pronounced glycogen accumulations, that were exclusively found in denervated muscle fibers. Only single fibers showed very small tubular aggregates, identified in evaluation of serial sections. This family demonstrates how diagnostic pitfalls can be addressed by an integrative approach including broad genetic analysis and re-evaluation of clinical as well as myopathological findings.


Glycogen Storage Disease Type II , Myasthenic Syndromes, Congenital , Adult , Diagnosis, Differential , Genetic Testing , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Glycogen , Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/genetics , High-Throughput Nucleotide Sequencing , Humans , Muscle Weakness/genetics , Myasthenic Syndromes, Congenital/diagnosis , Myasthenic Syndromes, Congenital/genetics
5.
Brain ; 145(6): 1916-1923, 2022 06 30.
Article En | MEDLINE | ID: mdl-35202461

The Kennedy pathways catalyse the de novo synthesis of phosphatidylcholine and phosphatidylethanolamine, the most abundant components of eukaryotic cell membranes. In recent years, these pathways have moved into clinical focus because four of ten genes involved have been associated with a range of autosomal recessive rare diseases such as a neurodevelopmental disorder with muscular dystrophy (CHKB), bone abnormalities and cone-rod dystrophy (PCYT1A) and spastic paraplegia (PCYT2, SELENOI). We identified six individuals from five families with bi-allelic variants in CHKA presenting with severe global developmental delay, epilepsy, movement disorders and microcephaly. Using structural molecular modelling and functional testing of the variants in a cell-based Saccharomyces cerevisiae model, we determined that these variants reduce the enzymatic activity of CHKA and confer a significant impairment of the first enzymatic step of the Kennedy pathway. In summary, we present CHKA as a novel autosomal recessive gene for a neurodevelopmental disorder with epilepsy and microcephaly.


Choline Kinase , Epilepsy , Microcephaly , Nervous System Malformations , Neurodevelopmental Disorders , Alleles , Choline Kinase/genetics , Epilepsy/genetics , Humans , Microcephaly/complications , Microcephaly/genetics , Nervous System Malformations/genetics , Neurodevelopmental Disorders/genetics
6.
Cells ; 10(9)2021 09 18.
Article En | MEDLINE | ID: mdl-34572118

Mitochondrial processes may play a role in the pathophysiology of migraine. Serum levels of two biomarkers, Fibroblast-growth-factor 21 (FGF-21) and Growth-differentiation-factor 15 (GDF-15), are typically elevated in patients with mitochondrial disorders. The study investigated whether the presence of migraine may influence FGF-21 and GDF-15 serum levels considering vascular and metabolic disorders as possible confounders. A cross-sectional study in two headache centers was conducted analyzing GDF-15 and FGF-21 serum concentration in 230 patients with episodic and chronic migraine compared to a control group. Key clinical features of headache were evaluated, as well as health-related life quality, anxiety and depression using SF-12 and HADS-questionnaires. Elevated GDF-15 values were detected in the migraine group compared to the control group (506.65 ± 275.87 pg/mL vs. 403.34 ± 173.29 pg/mL, p < 0.001, Mann-Whitney U test). A strong correlation between increasing age and higher GDF-15 levels was identified (p < 0.001, 95%-CI elevation of GDF-15 per year 5.246-10.850 pg/mL, multiple linear regression). Mean age was different between the groups, and this represents a confounding factor of the measurements. FGF-21 levels did not differ between migraine patients and controls (p = 0.635, Mann-Whitney U test) but were significantly influenced by increasing BMI (p = 0.030, multiple linear regression). Neither biomarker showed correlation with headache frequency. Higher FGF-21 levels were associated with a higher mean intensity of headache attacks, reduced health-related life quality and anxiety. When confounding factors were considered, increased serum levels of FGF-21 and GDF-15 were not detected in migraine patients. However, the results show an age-dependence of GDF-15 in migraine patients, and this should be considered in future studies. Similar findings apply to the relationship between FGF-21 and BMI. Previous studies that did not adjust for these factors should be interpreted with caution.


Biomarkers/blood , Fibroblast Growth Factors/blood , Growth Differentiation Factor 15/blood , Migraine Disorders/diagnosis , Mitochondrial Diseases/diagnosis , Adolescent , Adult , Aged , Case-Control Studies , Chronic Disease , Cross-Sectional Studies , Female , Germany/epidemiology , Humans , Male , Middle Aged , Migraine Disorders/blood , Migraine Disorders/epidemiology , Severity of Illness Index , Young Adult
7.
Int J Mol Sci ; 22(9)2021 May 02.
Article En | MEDLINE | ID: mdl-34063237

Muscle carnitine palmitoyltransferase II (CPT II) deficiency is associated with various mutations in CPT2 gene. In the present study, the impact of the two CPT II variants P50H and Y479F were characterized in terms of stability and activity in vitro in comparison to wildtype (WT) and the well investigated variant S113L. While the initial enzyme activity of all variants showed wild-type-like behavior, the activity half-lives of the variants at different temperatures were severely reduced. This finding was validated by the investigation of thermostability of the enzymes using nano differential scanning fluorimetry (nanoDSF). Further, it was studied whether the protein stabilizing diphosphatidylglycerol cardiolipin (CL) has an effect on the variants. CL indeed had a positive effect on the stability. This effect was strongest for WT and least pronounced for variant P50H. Additionally, CL improved the catalytic efficiency for CPT II WT and the investigated variants by twofold when carnitine was the varied substrate due to a decrease in KM. However, there was no influence detected for the variation of substrate palmitoyl-CoA. The functional consequences of the stabilization by CL in vivo remain open.


Cardiolipins/metabolism , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Muscles/metabolism , Carnitine , Carnitine O-Palmitoyltransferase/deficiency , Humans , Kinetics , Lipid Metabolism, Inborn Errors , Metabolism, Inborn Errors , Mutation
8.
Life (Basel) ; 10(9)2020 Sep 16.
Article En | MEDLINE | ID: mdl-32947855

It is known that exposure to excess saturated fatty acids, especially palmitate, can trigger cellular stress responses interpreted as lipotoxicity. The effect of excessive free fatty acids on oxidative phosphorylation capacity in myoblasts of patients with the m.3243A>G mutation was evaluated with the mitochondrial (Mito) stress test using a Seahorse XF96 analyzer. ß-oxidation, measured with the Seahorse XF96 analyzer, was similar in patients and controls, and reduced in both patients and controls at 40 °C compared to 37 °C. Mito stress test in the absence of fatty acids showed lower values in patients compared to controls. The mitochondrial activity and ATP production rates were significantly reduced in presence of palmitate, but not of oleate in patients, showing a negative effect of excessive palmitate on mitochondrial function in patients. Diabetes mellitus is a frequent symptom in patients with m.3243A>G mutation. It can be speculated that the negative effect of palmitate on mitochondrial function might be related to diacylglycerols (DAG) and ceramides (CER) mediated insulin resistance. This might contribute to the elevated risk for diabetes mellitus in m.3243A>G patients.

9.
Biomolecules ; 10(8)2020 07 24.
Article En | MEDLINE | ID: mdl-32722320

Mitochondrial function is essential for ATP-supply, especially in response to different cellular stressors. Increased mitochondrial biogenesis resulting from caloric restriction (CR) has been reported. Resveratrol (RSV) is believed to mimic the physiological effects of CR mainly via a sirtuin (SIRT) 1-dependent pathway. The effect of RSV on the physiological function of mitochondrial respiratory complexes was evaluated using a Seahorse XF96. Myoblasts of five patients harboring the m.3243A>G mutation and five controls were analyzed. The relative expression of several genes involved in mitochondrial biogenesis was evaluated for a better understanding of the coherent mechanisms. Additionally, media-dependent effects of nutritional compounds and hormonal restrictions (R) on myoblasts from patients and controls in the presence or absence of RSV were investigated. Culturing of myoblasts under these conditions led to an upregulation of almost all the investigated genes compared to normal nutrition. Under normal conditions, there was no positive effect of RSV on mitochondrial respiration in patients and controls. However, under restricted conditions, the respiratory factors measured by Seahorse were improved in the presence of RSV. Further studies are necessary to clarify the involved mechanisms and elucidate the controversial effects of resveratrol on SIRT1 and SIRT3 expression.


DNA, Mitochondrial/genetics , Mitochondria/drug effects , Mutation , Myoblasts/drug effects , Resveratrol/pharmacology , Adult , Aged , Antioxidants/pharmacology , Cells, Cultured , Female , Gene Expression/drug effects , Humans , Male , Middle Aged , Mitochondria/genetics , Mitochondria/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Oxygen Consumption/drug effects , Sirtuin 1/genetics , Sirtuin 1/metabolism
10.
Diseases ; 8(2)2020 Jun 09.
Article En | MEDLINE | ID: mdl-32527054

Pathogenic variants in the MT-ATP6 are a well-known cause for maternally inherited mitochondrial disorders associated with a wide range of clinical phenotypes. Here, we present a 31- year old female with insulin-dependent diabetes mellitus, recurrent lactic acidosis and ketoacidosis recurrent infections with suspected immunodeficiency with T cell lymphopenia and hypogammaglobulinemia as well as proximal tetraparesis with severe muscle and limb pain and rapid physical exhaustion. Muscle biopsy and respiratory chain activities were normal. Single-exome sequencing revealed a variant in the MT-ATP6 gene: m.9143T>C. Analysis of further specimen of the index and mother (segregation studies) revealed the highest mutation load in muscle (99% level of mtDNA heteroplasmy) of the index patient. Interestingly, acute metabolic and physical decompensation during recurrent illness was documented to be a common clinical feature in patients with MT-ATP6 variants. However, it was not mentioned as a key symptom. Thus, we suggest that the clinical spectrum might be expanded in ATP6-associated diseases.

11.
Article En | MEDLINE | ID: mdl-32268560

BACKGROUND: In patients with neuromuscular disorder, only little data of myalgia frequency and characterization exists. To date, only a weak correlation between pain intensity and pressure pain threshold has been found, and it remains enigmatic whether high pain intensity levels are equivalent to high pain sensitivity levels in neuromuscular disorders. METHODS: 30 sequential patients with suspected neuromuscular disorder and myalgia were analyzed with regard to myalgia characteristics and clinical findings, including symptoms of depression and anxiety and pain- threshold. RESULTS: A neuromuscular disorder was diagnosed in 14/30 patients. Muscular pain fasciculation syndrome (MPFS) without evidence for myopathy or myositis was diagnosed in 10/30 patients and 6/30 patients were diagnosed with pure myalgia without evidence for a neuromuscular disorder (e.g., myopathy, myositis, MPFS, polymyalgia rheumatica). Highest median pain scores were found in patients with pure myalgia and polymyalgia rheumatica. Pressure pain threshold measurement showed a significant difference between patients and controls in the biceps brachii muscle. CONCLUSION: Only a weak correlation between pain intensity and pressure pain threshold has been suggested, which is concordant with our results. The hypothesis that high pain intensity levels are equivalent to high pain sensitivity levels was not demonstrated.


Muscular Diseases , Myalgia , Myositis , Adult , Anoctamins , Female , Humans , Male , Middle Aged , Muscle, Skeletal , Muscular Diseases/complications , Myalgia/diagnosis , Myalgia/etiology , Myositis/complications , Pain Threshold , Young Adult
12.
Genes (Basel) ; 11(2)2020 02 18.
Article En | MEDLINE | ID: mdl-32085658

Different mitochondrial DNA (mtDNA) mutations have been identified to cause mitochondrial encephalopathy, lactate acidosis and stroke-like episodes (MELAS). The underlying genetic cause leading to an enormous clinical heterogeneity associated with m.3243A>G-related mitochondrial diseases is still poorly understood. Genotype-phenotype correlation (heteroplasmy levels and clinical symptoms) was analysed in 16 patients (15 literature cases and one unreported case) harbouring the m.3243A>G mutation. mtDNA copy numbers were correlated to heteroplasmy levels in 30 different post-mortem tissue samples, including 14 brain samples of a 46-year-old female. In the central nervous system, higher levels of heteroplasmy correlated significantly with lower mtDNA copy numbers. Skeletal muscle levels of heteroplasmy correlated significantly with kidney and liver. There was no significant difference of heteroplasmy levels between clinically affected and unaffected patients. In the patient presented, we found >75% heteroplasmy levels in all central nervous system samples, without harbouring a MELAS phenotype. This underlines previous suggestions, that really high levels in tissues do not automatically lead to a specific phenotype. Missing significant differences of heteroplasmy levels between clinically affected and unaffected patients underline recent suggestions that there are additional factors such as mtDNA copy number and nuclear factors that may also influence disease severity.


DNA Copy Number Variations , DNA, Mitochondrial/genetics , MELAS Syndrome/genetics , Point Mutation , Cadaver , Female , Genetic Association Studies , Humans , Male , Middle Aged , Mitochondria, Liver/genetics , Mitochondria, Muscle/genetics
13.
Diagnostics (Basel) ; 10(2)2020 Jan 26.
Article En | MEDLINE | ID: mdl-31991853

Mitochondrial dysfunction is known to play a key role in the pathophysiological pathway of neurodegenerative disorders. Nuclear-encoded proteins are involved in mtDNA replication, including DNA polymerase gamma, which is the only known replicative mtDNA polymerase, encoded by nuclear genes Polymerase gamma 1 (POLG) and Polymerase gamma 2 (POLG2). POLG mutations are well-known as a frequent cause of mitochondrial myopathies of nuclear origin. However, only rare descriptions of POLG2 mutations leading to mitochondriopathies exist. Here we describe a 68-year-old woman presenting with a 20-year history of camptocormia, mild proximal weakness, and moderate CK increase. Muscle histology showed COX-negative fibres. Genetic analysis by next generation sequencing revealed an already reported heterozygous c.1192-8_1207dup24 mutation in the POLG2 gene. This is the first report on a POLG2 mutation leading to camptocormia as the main clinical phenotype, extending the phenotypic spectrum of POLG2 associated diseases. This underlines the broad phenotypic spectrum found in mitochondrial diseases, especially in mitochondrial disorders of nuclear origin.

14.
Int J Mol Sci ; 20(6)2019 Mar 20.
Article En | MEDLINE | ID: mdl-30897730

Fibroblast growth factor 21 (FGF-21) is known to be a biomarker for mitochondrial disorders. An upregulation of FGF-21 in serum and muscle of carnitine palmitoyltransferase I (CPT I) and carnitine palmitoyltransferase II (CPT II) knock-out mice has been reported. In human CPT II deficiency, enzyme activity and protein content are normal, but the enzyme is abnormally regulated by malonyl-CoA and is abnormally thermolabile. Citrate synthase (CS) activity is increased in patients with CPT II deficiency. This may indicate a compensatory response to an impaired function of CPT II. In this study, FGF-21 serum levels in patients with CPT II deficiency during attack free intervals and in healthy controls were measured by enzyme linked immunosorbent assay (ELISA). The data showed no significant difference between FGF-21 concentration in the serum of patients with CPT II deficiency and that in the healthy controls. The results of the present work support the hypothesis that in muscle CPT II deficiency, in contrast to the mouse knockout model, mitochondrial fatty acid utilization is not persistently reduced. Thus, FGF-21 does not seem to be a useful biomarker in the diagnosis of CPT II deficiency.


Carnitine O-Palmitoyltransferase/blood , Carnitine O-Palmitoyltransferase/deficiency , Fibroblast Growth Factors/blood , Metabolism, Inborn Errors/blood , Mitochondrial Diseases/blood , Adult , Animals , Biomarkers/blood , Carnitine O-Palmitoyltransferase/genetics , Citrate (si)-Synthase/genetics , Citrate (si)-Synthase/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Malonyl Coenzyme A/genetics , Malonyl Coenzyme A/metabolism , Metabolism, Inborn Errors/genetics , Mice , Mice, Knockout , Middle Aged , Mitochondrial Diseases/genetics
15.
Curr Med Chem ; 25(18): 2070-2081, 2018.
Article En | MEDLINE | ID: mdl-29332568

The diagnosis of mitochondrial diseases is still challenging due to clinical and genetical heterogeneity. The development of advanced technologies including Whole-Exome- Sequencing (WES) and Whole-Genome-Sequencing (WGS) has led to improvements in genetic diagnosis. However, a reliable biomarker in serum could enhance and ease the diagnosis and indeed reduce the need for muscle biopsy. Several studies suggest Fibroblast growth factor 21 (FGF-21) as a biomarker for diagnosis in mitochondrial disorders. It is known, that in patients with mitochondrial disorders, the expression of FGF-21 gets elevated in an effort to counteract the underlying metabolic deficiency. The growth and differentiation factor 15 (GDF-15) has been described as a potential biomarker for mitochondrial diseases, too. In the present review, a literature research, using PubMed database about the reliability of FGF-21 as a biomarker for mitochondrial disorders and its comparison with GDF-15 has been performed.


Fibroblast Growth Factors/blood , Mitochondrial Diseases/diagnosis , Animals , Biomarkers/blood , Growth Differentiation Factor 15/blood , Humans , Reproducibility of Results
16.
J Bioenerg Biomembr ; 50(6): 461-466, 2018 12.
Article En | MEDLINE | ID: mdl-30604089

The phospholipid environment of the mitochondrial inner membrane, which contains large amounts of cardiolipin, could play a key role in transport of the long chain fatty acids. In the present study, the pre-incubation of cardiolipin with the wild type carnitine palmitoyltransferase (CPT) II led to a more than 1.5-fold increase of enzyme activity at physiological temperatures. At higher temperatures, however, there was a pronounced loss of activity. The most frequent variant S113L showed even at 37 °C a great activity loss. Pre-incubation of the wild type with both malonyl-CoA and cardiolipin counteracted the positive effect of cardiolipin. Malonyl-CoA, however, showed no inhibition effect on the variant in presence of cardiolipin. The activity loss in presence of cardiolipin at fever simulating situations was more pronounced for the variant comparing to the wild type. The reason might be a disturbed membrane association or a blockage of the active center of the mutated enzyme.


Cardiolipins/chemistry , Carnitine O-Palmitoyltransferase/chemistry , Cardiolipins/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Enzyme Activation , Humans , Malonyl Coenzyme A/chemistry , Malonyl Coenzyme A/metabolism
...